OSCILLATORY CONFLICT-CONTROL PROCESSES \dagger

Yu. B. Pilipenko and A. A. Chikrii

Kiev
(Received 24 April 1992)

Abstract

Some quasi-linear dynamical processes functioning under conditions of conflict [1, 3-8] are considered, on the assumption that Pontryagin's condition [1] holds only in certain intervals of the real half-line (this may occur, in particular, when a homogeneous system is performing periodic oscillations [2]). The method of resolvent functions [3,4] is used to establish sufficient conditions for the group pursuit problem [3, 4] to be solvable. A typical special case is examined and the group pursuit problem is solved for a second-order system [6]. The results have a bearing on the research reported in [3-5].

1. STATEMENT OF THE PROBLEM

SUPPOSE the state of a process $z=\left(z_{1}, \ldots, z_{v}\right), z_{i} \in R^{n_{1}}$, in the space R^{n} is described by the differential equations

$$
\begin{equation*}
\dot{z}_{i}=A_{i} z_{i}+\varphi_{i}\left(u_{i}, v\right), \quad u_{i} \in U_{i}, \quad v \in V \tag{1.1}
\end{equation*}
$$

where A_{i} are square matrices of order $n_{i}, \varphi_{i}\left(u_{i}, v\right)$ are jointly continuous vector-valued functions, and U_{i} and V are non-empty compact sets $(i=1,2, \ldots, v$ throughout, unless stated otherwise).

The terminal set M is the union of sets $M_{1}{ }^{*}, \ldots, M_{v}{ }^{*}$, each of which can be expressed as $M_{i}^{*}=M_{i}^{0}+M_{i}$, where M_{i}^{0} are linear subspaces of $R^{n_{i}}$, and M_{i} are convex closed sets in the L_{i}-orthogonal complements of M_{i}^{0} in $R^{n_{i}}$

A trajectory of the conflict-controlled process (1.1) in state $z^{0}=\left(z_{1}^{0}, \ldots, z_{v}^{0}\right)$ may be brought to the terminal set M at an instant of time $T\left(z^{0}\right)$ if measurable functions $u_{i}(t)=u_{i}\left(z_{i}^{0}, v_{i}(\cdot)\right)$ exist, where $v_{t}(\cdot)=\{v(s): s \in[0, t)\}, t \in\left[0, T\left(z^{0}\right)\right]$, with values in U_{i}, such that for at least one $i: z_{i}\left(T\left(z^{0}\right)\right) \in M_{i}^{*}$ and any measurable function $v(t), t \in\left[0, T\left(z^{0}\right)\right]$, it is true that $v(t) \in V$.

Our goal is to establish sufficient conditions, in terms of the parameters of process (1.1), to guarantee that the problem of bringing a trajectory to the terminal set in finite time is solvable.

2. AUXILIARY RESULTS

The proofs of the following results, which we shall need later, may be found in [8-12].
Let $K\left(R^{n}\right)$ be the space of all non-empty compact sets in R^{n}. We will define a Hausdorff metric in this space [9].
If $X, Y \subset K\left(R^{n}\right)$ and S is the unit sphere about zero in R^{n}, then $\operatorname{dist}(X, Y)=$ $\min \{\lambda \geqslant 0: X \subset Y+\lambda S, Y \subset X+\lambda S\}$.

A multiple-valued map $A(x), A: X \rightarrow K\left(R^{n}\right), X \subset \operatorname{dom} A=\{x, A(x) \neq 0\}$ is upper semicontinuous at a point $x_{0} \in X$, if, for every $\varepsilon>0$, there exists $\delta>0$ such that if $\left\|x-x_{0}\right\| \leqslant \delta$, then $A(x) \subset A\left(x_{0}\right)+\varepsilon S$. If a map $A(x)$ is upper semi-continuous at each point of a set X, it is said to be upper semi-continuous on X. Given a set $X, X \subset K\left(R^{n}\right)$, we define the cone $\operatorname{con} X=\{z$: $z=\lambda x, x \in X, \lambda>0$, and let $\overline{\operatorname{con}} X$ denote the closure of $\operatorname{con} X$.
Lemma $1[8]$. Let $X, Y, M \subset K\left(R^{n}\right)$; assume that $A(x, y), A: X * Y \rightarrow K\left(R^{n}\right)$, is an upper semi-continuous (multiple-valued) map and $f(x), f: X \rightarrow R^{n}$, a continuous function such that $f(x) \cap M=\varnothing$ for any $x \in X, y \in Y$. Then the function $\alpha(x, y), \alpha: X * Y \rightarrow R^{1}$, defined by $\alpha(x$, $y)=\max (\alpha \geqslant 0: \alpha(M-f(x)) \cap A(x, y) \neq 0\}$ is upper semi-continuous.

Lemma 2 [10]. Let $X \subset K\left(R^{n}\right)$; assume that $T(x), T: X \rightarrow K\left(R^{n}\right), A(x) A: X \rightarrow K\left(R^{n}\right)$ are upper semi-continuous (multiple-valued) maps and $f(x, y), x \in X, y \in A(x), f(x, y) \in R^{n}$ is a continuous function. Then the multiple-valued map $C(x)=\{y \in A(x): f(x, y) \in T(x)\}$ is upper semi-continuous.
We shall say that a multiple-valued map $A(x), A: X \rightarrow K\left(R^{n}\right)$, is Lebesgue (Borel) measurable if X is a Lebesgue- (Borel-)measurable set and, for any $Y \subset K\left(R^{n}\right)$, the set $\{x \in X: A(x) \subset Y\}$ is Lebesgue (Borel) measurable. To simplify the terminology, we shall call Lebesgue-measurable maps simply measurable, and refer to Borel-measurable maps as Borel maps.
Lemma 3 [11]. Let $X \subset K\left(R^{n}\right)$; assume that $T(x), T: X \rightarrow K\left(R^{n}\right), A(x), A: X \rightarrow K\left(R^{n}\right)$, are measurable (Borel) multiple-valued maps and that the function $f(x, y), x \in X, y \in A(x), f(x$, $y) \in R^{n}$, is measurable (Borel) as a function of x and continuous as a function of y. Then the multiple-valued map $C(x)=\{y \in A(x): f(x, y) \in T(x)\}$ is measurable (Borel).

Let $X \subset K\left(R^{n}\right)$; let X_{1} be the set of vectors $x \in X$ whose least component is their first one, X_{2} the set of $x \in X_{1}$ whose least component is the second one, and so on, up to X_{n}. The set X_{n} clearly consists of a single point x^{*}. Then x^{*} is called the lexicographic minimum of X; let $x^{*}=$ lexmin X.
A selector of a multiple-valued map $A(x), A: X \rightarrow K\left(R^{n}\right)$, is a single-valued function $a(x)$ such that $a(x) \in A(x)$ for all $x \in X$.

Lemma 4 [12]. Let $X \subset K\left(R^{n}\right)$, and let $A(x), A: X \rightarrow K\left(R^{n}\right)$ be a measurable (Borel) map. Then the selector $a(x)=\operatorname{lexmin} A(x), x \in X$ is measurable (Borel).

Lemma 5 [9]. Let $X, Y, Z \subset K\left(R^{n}\right)$; let $\varphi(y), \varphi: Y \rightarrow Z$ be a Borel function and $y(x)$, $y: X \rightarrow Y$, a measurable function. Then the function $\psi(t)=\varphi(y(x)), \psi: X \rightarrow Z$ is measurable.

3. SCHEME OF THE METHOD

Let π_{i} denote the orthogonal projection operator from R^{n} on to the subspace L_{i}. Using the functions $W_{i}\left(t, u_{i}, v\right)=\pi_{i} \Phi_{i}(t) \varphi_{i}\left(u_{i}, v\right), t \geqslant 0, u_{i} \in U_{i}, v \in V$ (where $\Phi_{i}(t)=\exp \left(t A_{i}\right)$), we define multiple-valued maps

$$
W_{i}(t, v)=\bigcup_{u_{i} \in U_{i}} W_{i}\left(t, u_{i}, v\right), \quad W_{i}(t)=\bigcap_{v \in V} W_{i}(t, v)
$$

Pontryagin's condition means that $W_{i}(t) \neq 0$ for all $t \geqslant 0$. We shall adopt certain rather weaker assumptions [13].

Condition 1.

$$
\operatorname{dom} W_{i}(t)=\left\{\bigcup_{k=0}^{\infty}\left[t_{2 k}^{i}, t_{2 k+1}^{i}\right]\right\}, \quad t_{0}^{i}=0, t_{j}^{i}<t_{j+1}^{i}
$$

for all $j=0,1,2, \ldots$.

Put

$$
\Delta_{+}^{i}=\bigcup_{k=0}^{0}\left[t_{2 k}^{i}, t_{2 k+1}^{i}\right], \Delta_{-}^{i}=\bigcup_{k=0}^{\cong}\left(t_{2 k+1}^{i}, t_{2 k+2}^{i}\right)
$$

Condition 2. Borel multiple-valued maps $Q_{i}(t), Q_{i}: \Delta_{-}^{i} \rightarrow K\left(L_{i}\right)$ exist, such that 1. we have

$$
\bigcap_{v \in V}\left(W_{i}(t, v)+Q_{i}(t)\right\} \neq \varnothing
$$

for all $t \in \Delta_{-}^{i}$ and
2. we have

$$
\int_{h_{k+1}}^{i_{k x 2}} Q_{i}(\tau) d \tau \subset \int_{b_{k}}^{\hbar_{k \tau 1}} W_{i}(\tau) d \tau
$$

for all $k=0,1,2, \ldots$

Define times

$$
\begin{equation*}
\tilde{t}_{2 k+1}^{i}=\max \left[t \leqslant t_{2 k+1}^{i}: \int_{i_{k+1}^{2}}^{i_{2 k+2}^{i}} Q_{i}(\tau) d \tau \subset \int_{1}^{i_{2 k+1}^{i}} W_{i}(\tau) d \tau\right] \tag{3.1}
\end{equation*}
$$

$k=0,1,2, \ldots$.
Fix $t \in[0,+\infty)$. For every i there exists an integer $p_{i} \geqslant 0$ such that $t \in\left[t_{2 p}^{i}, t_{2 p+1}^{i}\right]$ or $t \in\left(t_{2 p_{i}+1}^{i}\right.$, $t_{2 p+2}^{i}$).
$\stackrel{{ }^{2 \mu+2}}{\text { For }} \boldsymbol{i}$ such that $t \in\left[t_{2 p}^{i}, t_{2 p_{+}+1}^{i}\right]$, we define sets $\Delta_{-}^{i}(t), \Delta_{0}^{i}(t), \tilde{\Delta}_{+}^{i}(t)$ by

$$
\begin{aligned}
& \Delta_{-}^{i}(t)=\bigcup_{k=0}^{p}\left(t-t_{2 k+2}^{i}, t-t_{2 k+1}^{i}\right) ; \quad \Delta_{0}^{i}(t)=\bigcup_{k=0}^{p}\left[t-t_{2 k+1}^{i}, t-\tilde{t}_{2 k+1}^{i}\right] \\
& \tilde{\Delta}_{+}^{i}(t)=\bigcup_{k=0}^{p_{i}^{-1}}\left(t-\bar{t}_{2 k+1}^{i}, t-t_{2 k}^{i}\right) \cup\left[0, t-t_{2 p_{i}+1}^{i}\right]
\end{aligned}
$$

For i such that $t \in\left(t_{2 p_{+}+1}^{i}, t_{2 p_{+}+2}^{i}\right)$, we define sets $\Delta_{0}^{i}(t), \Delta_{-}^{i}(t), \tilde{\Delta}_{+}^{i}(t)$ by

$$
\begin{aligned}
& \Delta_{-}^{i}(t)=\bigcup_{k=0}^{1}\left(t-t_{2 k+2}^{i}, t-t_{2 k+1}^{i}\right) \cup\left[0, t-t_{2 p_{i}+1}^{i}\right] \\
& \Delta_{0}^{i}(t)=\bigcup_{k=0}^{p}\left[t-t_{2 k+1}^{i}, t-\tilde{i}_{2 k+1}^{i}\right] ; \quad \tilde{\Delta}_{+}^{i}(t)=\bigcup_{k=0}^{p}\left(t-\tilde{t}_{2 k+1}^{i}, t-t_{2 k}^{i}\right)
\end{aligned}
$$

For fixed $t, t>0$, we let

$$
\Gamma_{i}(t)=\left\{\begin{array}{ll}
\left.\gamma_{i}(\cdot): \begin{array}{l}
\gamma_{i}(t-\tau) \in W_{i}(t-\tau), \tau \in \tilde{\Delta}_{+}^{i}(t) \\
\gamma_{i}(t-\tau)=0, \tau \in[0, t] \backslash \tilde{\Delta}_{+}^{i}(t)
\end{array}\right\}, ~ \text {, }
\end{array}\right\}
$$

denote the set of Borel selectors of the map $W(t-\tau), t \geqslant \tau \geqslant 0$. Set $\left.\gamma(\cdot)=\gamma_{1}(), \ldots, \gamma_{v}()\right)$, $\Gamma()=\left(\Gamma_{1}(), \ldots, \Gamma_{v}(\cdot)\right)$.
Fixing some Borel selector $\gamma(\cdot) \in \Gamma(t)$, we put

$$
\begin{equation*}
\xi_{i}\left(t, z_{i}, \gamma_{i}(\cdot)\right)=\pi_{i} \Phi_{i}(t) z_{i}+\int_{0}^{1} \gamma_{i}(t-\tau) d \tau \tag{3.2}
\end{equation*}
$$

We now define the resolvent functions

$$
\begin{align*}
& \mu_{i}\left(t, \tau, z_{i}, v, \gamma \cdot(\cdot)\right)= \\
& =\left\{\begin{array}{l}
\sup \left[\mu \geqslant 0: W_{i}(t-\tau, v)-\gamma_{i}(t-\tau) \cap \mu\left(M_{i}-\xi_{i}\left(t, z_{i}, \gamma_{i}(\cdot)\right)\right) \neq \phi\right] \\
0, \tau \in[0, t] \backslash \tilde{\Delta}_{+}^{i}(t)
\end{array}\right\} \tag{3.3}
\end{align*}
$$

Set

$$
\begin{aligned}
& \mu(t, \tau, z, v, \gamma(\cdot), \alpha)=\sum_{i=1}^{v} \alpha_{i} \mu_{i}\left(t, \tau, z_{i}, v, \gamma_{i}(\cdot)\right) \\
& \alpha \in U=\left\{\alpha: \alpha=\left(\alpha_{1}, \ldots, \alpha_{v}\right), \alpha_{i} \geqslant 0, \sum_{i=1}^{v} \alpha_{i}=1\right\}
\end{aligned}
$$

and define a time

$$
\begin{equation*}
T(z, \gamma())=\min \left\{t \geqslant 0: 1-\inf _{v(\cdot) \in \mathbb{S} V} \max _{\alpha \in U} \int_{0}^{i} \mu(t, \tau, z, v(\tau), \gamma(\cdot), \alpha) d \tau \leqslant 0\right\} \tag{3.4}
\end{equation*}
$$

$\Omega_{v}=\{v(\cdot): v(\tau) \in V, \tau \geqslant 0, v(\tau)$ is a measurable function $\}$.
If $\xi_{i}\left(t, z_{i}, \gamma_{i}(\cdot)\right) \notin M_{i}$, the resolvent function $\mu(t, \tau, z, v, \gamma(\cdot), \alpha)$ is finite for any values of the arguments, and by Lemma 1 it is Borel with respect to v, τ, t. Consequently, $\mu(t, \tau, z, v, \gamma(\cdot), \alpha)$ is an integrable function in any finite interval.

If an i exists such that at time t^{*} we have $\xi_{i}\left(t^{*}, z_{i}, \gamma_{i}(\cdot)\right) \in M_{i}$ and $\alpha_{i} \neq 0$, then $\mu\left(t^{*}, \tau, z, v\right.$, $\gamma(\cdot), \alpha)=+\infty$ for any τ, v. Using the fact that the integral of a function that equals $+\infty$ in a finite interval is also equal to $+\infty$, we deduce that inequality (3.4) is automatically true, so that $t^{*}=T(z, \gamma(\cdot))$.

4. MAIN THEOREM

Theorem 1. Suppose that the conflict-controlled process (1.1) is in its initial state z^{0} and that conditions 1 and 2 are satisfied; suppose, moreover, that Borel selectors $\gamma_{i}^{0}(t-\tau), \gamma_{i}^{0}(t-\tau) \in$ $\Gamma_{i}(t), t \geqslant \tau \geqslant 0$ exist, such that $T\left(z^{0}, \gamma^{0}(\cdot)\right)<+\infty$. Then the trajectory of the process may be brought to the terminal set M at time $T\left(z^{0}, \gamma^{0}(\cdot)\right)$.

Proof. Put $T\left(z^{0}, \gamma^{0}(\cdot)\right)=T$. Let $v(\tau) \in \Omega_{v}$.
Let us assume that $\xi_{i}\left(T, z_{i}^{0}, \gamma_{i}^{0}()\right) \notin M_{i}$ for all $i=1,2, \ldots, v$. Define the test function as follows:

$$
\sigma\left(T, I, z^{0}, v(\cdot), \gamma^{0}(\cdot)\right)=1-\max _{\alpha \in U} \int_{0}^{\prime} \mu\left(T, \tau, z^{0}, v(\tau), \gamma^{0}(\cdot)\right) d \tau
$$

Since $\sigma\left(T, 0, z^{0}, v(\cdot), \gamma^{0}()\right)=1$ and $\sigma\left(T, t, z^{0}, v(), \gamma^{0}(\cdot)\right)$ is a continuous decreasing function of t, it follows from (3.4) that a time $t .: 0<t \leqslant T$ exists such that $\sigma\left(T, t_{.}, z^{0}, v(\cdot), \gamma^{0}()\right)=0$.
We choose controls $u_{i}(\tau), u_{i}(\tau) \in U_{i}$ for $\tau \in\left[0, t_{\text {t }}\right]$ as follows.

1. Let $\tau \in \tilde{\Delta}_{+}^{i}(T) \cap[0, t$.$] .$

Consider the multiple-valued map defined by

$$
\begin{aligned}
& U_{i}^{1}(\tau, v)=\left\{u_{i} \in U_{i}: W_{i}\left(T-\tau, u_{i}, v\right)-\right. \\
& \left.-\gamma_{i}^{0}(T-\tau) \in \mu_{i}\left(T, \tau, z_{i}^{0}, v, \gamma_{i}^{0}(\cdot)\right)\left(M_{i}-\xi_{i}\left(T, z_{i}^{0}, \gamma_{i}^{0}(\cdot)\right)\right)\right\}
\end{aligned}
$$

Remembering our assumptions about the parameters of the process (1.1), we may conclude
that $W_{i}\left(T-\tau, u_{i}, v\right)-\gamma_{i}^{0}(T-\tau)$ is a Borel function of τ and a continuous function of u_{i}, and that the multiple-valued function

$$
\left.\mu_{i}\left(T, \tau, z_{i}^{0}, v(\tau), \gamma_{i}^{0}(\cdot)\right) \mid M_{i}-\xi_{i}\left(T, z_{i}^{0}, \gamma_{i}^{0}(\cdot)\right)\right]
$$

is a Borel function of τ, v, since by Lemma $1 \mu_{i}\left(T, \tau, z_{i}^{0}, v, \gamma_{i}^{0}(\cdot)\right.$) is an upper semi-continuous function of v.

By Lemma 3, $U_{i}^{i}(\tau, v)$ is a Borel function of v, τ. Starting from the multiple-valued map $U_{i}^{i}(\tau$, v) we consider the selector $u_{1}^{i}(\tau, v)=\operatorname{lexmin} U_{1}^{i}(\tau, v)$.

By Lemma 4, $u_{1}^{i}(\tau, v)$ is a Borel function of τ, v.
We now define the control $u_{i}^{\prime}(\tau)$ for $\tau \in \tilde{X}_{+}^{i}(T) \cap[0, t]$ to be $u_{i}(\tau)=u_{i}^{i}(\tau, v(\tau))$. Then, by Lemma 5, $u_{i}(\tau)$ is measurable.
2. Let $\tau \in \Delta_{-}^{i}(T)$. We form the multiple-valued map

$$
U_{2}^{i}(\tau, v)=\left\{u_{i} \in U_{i}: W_{i}\left(T-\tau, u_{i}, v\right) \in-Q_{i}(T-\tau)\right\}
$$

By condition 2 and Lemmas 2 and $3, U_{2}^{i}(\tau, v)$ is a non-empty Borel function of τ and an upper semi-continuous function of v.

Define $u_{2}^{i}(\tau, v)=\operatorname{lexmin} U_{2}^{i}(\tau, v)$ and define the control $u_{i}(\tau)$ for $\tau \in \Delta^{i}(T)$ to be $u_{2}^{i}(\tau, v(\tau))$. As in case 1, one shows that $u_{i}(\tau)$ is a measurable function of τ for $\tau \in \Delta_{-}^{i}(T)$.
Put

$$
\eta_{2 k+1}^{i}\left(u_{i}(\cdot), v(\cdot)=\int_{\tau-t_{k+2}}^{T-t_{i}+1} W_{i}\left(T-\tau, u_{i}(\tau) \quad v v-\right)\right) d \tau_{,} k=p_{t}-1, \ldots, 0 .
$$

For i such that $t \in\left(t_{2_{n}+1}^{i}, t_{\partial_{n}, 2}^{j}\right)$. if $k=p_{i}$, we obtain

$$
\eta_{2 p_{i}+1}^{i}\left(u_{i}(), v(\cdot)\right)=\int_{0}^{T-\tau_{2}^{2}+1} W_{i}\left(T \quad u_{i}(\tau), v(\tau)\right) d \tau
$$

3. Let $\tau \in \Delta_{0}^{i}(T)$. Then $\tau \in\left[t-t_{2 k+1}^{i}, t-\bar{t}_{2 k+z}^{i}\right]$, where $k=p_{i}-1, \ldots, 0$ for i such that $T \in\left[t_{2 p_{i}}^{i}\right.$, $t_{2_{k}+1}^{i} 1$, and $k=p_{i}, \ldots$, 0 for i such that $T \in\left(t_{2 p_{i}+1}^{i}, t_{2 p_{i}+2}^{i}\right)$.

By the definition of $u_{i}(\tau)$, for $\tau \in \Delta_{-}(T)$

$$
\begin{align*}
& -\eta_{2 k+1}^{i}\left(u_{i}(\cdot), v(\cdot)\right) \in \int_{T-t_{2 k+2}^{i}}^{T-Q_{i}+1} Q_{i}(T-\tau) d \tau \\
& -\eta_{2 p_{i}+1}^{i}\left(u_{i}(\cdot), v(\cdot)\right) \in \int_{0}^{T-t_{2}+1} Q_{i}(T-\tau) d \tau \tag{4.1}
\end{align*}
$$

It follows from (3.1) and (4.1) that

$$
\begin{equation*}
-\eta_{2 k+1}^{i}\left(u_{i}(), v(\cdot) \in \int_{\tau-\frac{1}{2} k+1}^{T-T_{k+1}^{2}} W_{i}(T-\tau) d \tau\right. \tag{4.2}
\end{equation*}
$$

By (4.2), a Borel selector $h_{2 k+1}^{i}(T-\tau)$ of the map $W_{i}(T-\tau), \tau \in\left(T-t_{2 k+1}^{i}, T-\tilde{r}_{2 k+1}^{i}\right)$ exists, such that

$$
\int_{T-h_{2+1}}^{T-T_{2 k+1}^{2}} h_{2+1}^{2}(T-\tau) d \tau=-\eta_{2 k+1}^{i}\left(u_{i}(\cdot), v(\cdot)\right)
$$

For those i such that $T \in\left(t_{2 p+1}^{i}, t_{2 p+2}^{i}\right)$, we have $k=p_{i}, \ldots, 0$.
For those i such that $T \in\left(t_{2 p}^{i}, t_{2 p_{+}+1}^{i}\right)$, we have $k=p_{i}-1, \ldots, 0$.
Define $h^{i}(T-\tau)=h_{2 k+1}^{i}(T-\tau)$ for all k.
Thus, the function $h^{i}(T-\tau)$ has been defined for all $\tau \in \Delta_{-}^{i}(t)$. We now form the multiplevalued map

$$
U_{3}^{i}(\tau, v)=\left\{u_{i} \in U_{i}: W_{i}\left(T-\tau, u_{i}, v\right)=h^{i}(T-\tau)\right\}
$$

By Lemmas 2 and 3, $U_{3}^{i}(\tau, v)$ is a Borel function of τ and an upper semi-continuous function of v.

Put $u_{3}^{i}(\tau, v)=$ exmin $U_{3}^{i}(\tau, v)$, and define the control $u_{i}(\tau)$ to be $u_{3}^{i}(\tau, v(\tau))$.
By Lemmas 4 and 5 , we see that $u_{i}(\tau)$ is a measurable function of τ for $\tau \in \Delta_{0}^{i}(T)$.
4. Let $\tau \in \tilde{\Delta}_{+}^{i}(T) \cap[t ., T]$. We form a multiple-valued map

$$
U_{4}^{i}(\tau, v)=\left\{u_{i} \in U_{i}: W_{i}\left(T-\tau, u_{i}, v\right)=\gamma_{i}^{0}(T-\tau)\right\}
$$

Define $u_{4}^{i}(\tau, v)=\operatorname{lexmin} U_{4}^{i}(\tau, v)$, and define the control $u_{i}(\tau)$ to be $u_{4}^{i}(\tau, v(\tau))$.
As in case 3, one shows that $u_{i}(\tau)$ is a measurable function in the interval $\tau \in \Delta_{+}^{\prime}(T) \cap\left[t_{0}, T\right]$. By Cauchy's formula

$$
\begin{equation*}
\pi_{i} z_{i}(T)=\pi_{i} \Phi_{i}(T) z_{i}^{0}+\int_{0}^{T} W_{i}\left(T-\tau, u_{i}(\tau), v(\tau)\right) d \tau \tag{4.3}
\end{equation*}
$$

Taking the definition of the control $u_{i}(\tau)$ for $\tau \in \Delta_{-}^{i}(T)$ and $\tau \in \Delta_{0}^{i}(T)$ into account, we obtain

$$
\begin{equation*}
\int_{T-i_{k+2}}^{\tau-t_{k+1}^{t}} W_{i}\left(T-\tau, u_{i}(\tau), v(\tau)\right) d \tau+\int_{\tau-T_{k+1}}^{T-T_{k+1}} W_{i}\left(T-\tau, u_{i}(\tau), v(\tau)\right) d \tau=0 \tag{4.4}
\end{equation*}
$$

for all $k=p_{i}-1, \ldots, 0$.
For i such that $T \in\left(t_{2 p_{1}+1}^{i}, t_{2 p_{+}+2}^{i}\right)$ when $k=p_{i}$, we obtain

By the method of resolvent functions [3], we see that for $\tau \in \tilde{\Delta}_{+}^{\prime}(T)$

$$
\begin{equation*}
W_{i}\left(T-\tau, u_{i}(\tau), v(\tau)\right)-\gamma_{i}^{0}(t-\tau) \in \mu_{i}\left(T, \tau, z_{i}^{0}, v(\tau), \gamma_{i}^{0}(\cdot)\right)\left[M_{i}-\xi_{i}\left(T, z_{i}^{0}, \gamma_{i}^{0}(\cdot)\right)\right] \tag{4.6}
\end{equation*}
$$

Taking into account that the functions

$$
W_{i}\left(T-\tau, u_{i}(\tau), v(\tau)\right), \quad \gamma_{i}^{0}(T-\tau), \quad \mu_{i}\left(T, \tau, z_{i}^{0}, v(\tau), \quad \gamma_{i}^{0}(\cdot)\right)
$$

are measurable with respect to τ, we deduce from (4.6) that

$$
\begin{equation*}
\int_{\tilde{\Delta}_{+}^{\prime}(T)} W_{i}\left(T-\tau, u_{i}(\tau), v(\tau)\right) d \tau \in\left[M_{i}-\xi_{i}\left(T, z_{i}^{0}, \gamma_{i}^{0}()\right)\right] \int_{\dot{\delta}_{i}^{\prime}(T)} \mu_{i}\left(T, \tau, z_{i}^{0}, v(\tau), \gamma_{i}^{0}(\cdot)\right) d \tau+\int_{\tilde{\delta}_{i}^{\prime}(\tau)} \gamma_{i}^{0}(T-\tau) d \tau \tag{4.7}
\end{equation*}
$$

Noting that $\gamma_{i}^{0}(T-\tau)=0$ and $\mu_{i}\left(T, \tau, z_{i}^{0}, v(\tau), \gamma_{i}^{0}(\cdot)\right)=0$ for $\tau \in[0, T] \backslash \Delta_{+}^{i}(T)$, and using (4.4) and (4.5), we can write (4.7) in the form

$$
\begin{equation*}
\int_{0}^{T} W_{i}\left(T-\tau, u_{i}(\tau), \vartheta(\tau)\right) d \tau \in\left[M_{i}-\xi_{i}\left(T, z_{i}^{0}, \gamma_{i}^{0}(\cdot)\right)\right] \int_{0}^{T} \mu_{i}\left(T, \tau, z_{i}^{0}, v(\tau), \gamma_{i}^{0}(\cdot)\right) d \tau+\int_{0}^{T} \gamma_{i}^{0}(T-\tau) d \tau \tag{4.8}
\end{equation*}
$$

The test function $\sigma\left(T, T, z^{0}, v(\cdot), \gamma(\cdot)\right)$ vanishes by the definition of the controls $u_{i}(\tau)$, i.e. an index i_{0} exists such that

$$
\begin{equation*}
1-\int_{0}^{T} \mu_{i_{0}}\left(T, \tau, z_{i_{b}}^{0}, v(\tau), \gamma_{i b}^{0}(\cdot)\right) d \tau=0 \tag{4.9}
\end{equation*}
$$

It follows from (3.2), (4.3), (4.8) and (4.9) that

$$
\pi_{i_{0}} z_{i_{0}}^{0}(T) \in M_{i_{0}}
$$

Let us consider the case when $\xi_{b}\left(T, z_{b}^{0}, \gamma_{b}^{0}()\right) \in M_{i_{6}}$ for some number i_{0}. We then define the control $u_{i_{b}}(\tau), u_{i_{b}}(\tau) \in U_{i}, \tau \in[0, T]$ as follows:

$$
u_{i_{0}}(\tau)= \begin{cases}u_{2}^{i_{0}}(\tau, v(\tau)), & \tau \in \Delta_{i_{0}}^{i_{0}}(T) \\ u_{3}^{i_{0}}(\tau, v(\tau)), & \tau \in \Delta_{0}^{i_{0}}(T) \\ u_{4}^{i_{0}}(\tau, v(\tau)), & \tau \in \bar{\Delta}_{+}^{i_{0}}(T)\end{cases}
$$

It follows from (3.2) and (4.3) that in this case $\pi_{i_{0}} z_{i b}^{0}(T) \in M_{i_{0}}$ also. This proves the theorem.

5. MODIFIED METHOD

We shall now examine another approach to the solution of our problem. We introduce multi-valued maps

$$
\begin{gather*}
W_{i}(t, \tau, v)=\pi_{i} \Phi_{i}(t-\tau) \varphi_{i}\left(U_{i}, v\right)-\omega_{i}(t, \tau) M_{i} \\
W_{i}(t, \tau)=\bigcap_{v \in V} W_{i}(t, \tau, v), \omega_{i}(t, \tau) \geqslant 0, \int_{0}^{t} \omega_{i}(t, \tau) d \tau=1 \tag{5.1}
\end{gather*}
$$

Condition 3.

$$
\begin{aligned}
\operatorname{dom} W i(t, \tau) & =\bigcup_{k=0}^{\infty} \Delta^{i}(k, t), \\
\Delta^{i}(k, t) & = \begin{cases}{\left[t_{2 k}^{i}, t\right],} & t \in\left[t_{2 k}^{i}, \quad t_{2 k+1}^{i}\right) \\
{\left[t_{2 k}, t_{2 k+1}^{i}\right),} & t \geqslant t_{2 k+1}^{i} \\
\phi, & t<t_{2 k}^{i}\end{cases}
\end{aligned}
$$

Define sets $\Delta_{-}^{i}(k, t)$ and $\Delta_{+}^{i}(k, t)$ by the formulae

$$
\Delta_{-}^{i}(k, t)= \begin{cases}\left(t-t_{2 k+2}^{i}, t-t_{2 k+1}^{i}\right), & t \geqslant t_{2 k+2}^{i} \tag{5.2}\\ {\left[0, t-t_{2 k+1}^{i}\right),} & t \in\left[t_{2 k+1}^{i}, \quad t_{2 k+2}^{i}\right) \\ \phi, & t<t_{2 k+1}^{i}\end{cases}
$$

$$
\Delta_{+}^{i}(k, t)= \begin{cases}{\left[t-t_{2 k+1}^{i}, t-t_{2 k}^{i}\right],} & t \geqslant t_{2 k+1}^{i} \tag{5.3}\\ {\left[0, t-t_{2 k}^{i}\right],} & \left.t \in t_{2 k}^{i}, t_{2 k+1}^{i}\right) \\ \phi, & t<t_{2 k}^{i}\end{cases}
$$

Put $k_{i}(t)=\max \left[k \geqslant 0: \Delta_{-}^{i}(k, t) \neq 0\right]$.
Now set

$$
\Delta_{-}^{i}(t)=\bigcup_{k=0}^{k_{i}^{(t)}} \Delta_{-}^{i}(k, t) ; \quad \Delta_{+}^{i}(t)=\bigcup_{k=0}^{k_{i}(t)+1} \Delta_{+}^{i}(k, t)
$$

Condition 4. Borel multi-valued maps $Q_{i}(t, \tau), Q_{i}:[0,+\infty] * \Delta_{-}(t) \rightarrow K\left(L_{i}\right)$ exist, such that

$$
\text { 1. } \bigcap_{v \in \vartheta}\left\{W_{i}(t, \tau, v)+Q_{i}(t, \tau)\right\} \neq \varnothing \text {, for all } \tau \in \Delta_{-}^{i}(t)
$$

2. $\int_{\Delta_{i}^{\top}\left(k_{i}\right)} Q_{i}(t, \tau) d \tau \subset \int_{\Lambda_{t}^{\prime}(k, t)} W_{i}(t, \tau) d \tau$, for all $k=0, \ldots, k_{i}(t)$.

Define the times

$$
\tilde{t}_{2 k+1}^{i}=\max \left[\tilde{t} \leqslant t_{2 k+1}^{i}: \int_{\Delta((k, t)} Q_{i}(t, \tau) d \tau \subset \int_{t-h_{k+1}}^{t-i} W_{i}(t, \tau) d \tau\right]
$$

Now set

$$
\Delta_{0}^{i}(k, t)= \begin{cases}{\left[t-t_{2 k+1}^{i}, t-\tilde{t}_{2 k+1}^{i}\right], t \geqslant t_{2 k+1}^{i}} & \Delta_{0}^{i}(t)=\sum_{k=0}^{\xi_{0}^{(t)} \Delta_{0}^{i}(k, t)} \tag{5.4}\\ \phi, t<t_{2 k+1}^{i} & \tilde{\Delta}_{+}^{i}(t)=\Delta_{+}^{i}(t) \backslash \Delta_{0}^{i}(t)\end{cases}
$$

Put

$$
\Gamma_{i}(t)=\left\{\begin{array}{ll}
\gamma_{i}(\cdot): & \gamma_{i}(t, \tau) \in W_{i}(t, \tau), \quad \tau \in \tilde{\Delta}_{+}^{i}(t), \\
\gamma_{i}(t, \tau)=0, \quad \tau \in[0, t] \backslash \tilde{\Delta}_{+}^{i}(t),
\end{array} \quad \gamma_{i}(\cdot) \text { is Borel }\right\}
$$

Set

$$
\begin{aligned}
& \xi_{i}\left(t, z_{i}, \gamma_{i}(\cdot)\right)=\pi_{i} \Phi_{i}(t) z_{i}+\int_{0}^{1} \gamma_{i}(t, \tau) d \tau \\
& \mu_{i}\left(t, \tau, z_{i}, v, \gamma_{i}(\cdot)\right)=\left\{\begin{array}{l}
\sup \left[\mu \geqslant 0:-\mu \xi_{i}\left(t, z_{i}, \gamma_{i}(\cdot)\right) \in W_{i}(t, \tau, v)-\gamma_{i}(t, \tau)\right. \\
\tau \in \tilde{\Delta}_{+}^{i}(t) \\
0, \tau \in[0, t] \backslash \tilde{\Delta}_{+}^{i}(t)
\end{array}\right\} \\
& \mu(t, \tau, z, v, \gamma(\cdot), \alpha)=\sum_{i=1}^{v} \alpha_{i} \mu_{i}\left(t, \tau, z_{i}, v, \gamma_{i}(\cdot)\right) \\
& T_{\alpha(\cdot)}(z, \gamma())=\min \left\{t \geqslant 0: 1-\inf _{v\left(\mathcal{i} \in a_{v}\right.} \max _{\alpha \in U} \int_{0}^{t} \mu(t, \tau, z, v(\tau), \gamma(\cdot), \alpha) d \tau \leqslant 0\right\}
\end{aligned}
$$

Theorem 2. Suppose that the conflict-controlled process (1.1) is in state z^{0} and that nonnegative Borel functions $\omega_{i}(t, \tau), t \geqslant \tau \geqslant 0$, and Borel selectors $\gamma_{i}^{0}(t, \tau) \in \Gamma_{i}(t)$ exist such that

$$
T=T_{\text {vo(})}\left(z^{0}, \gamma^{0}(\cdot)\right)<+\infty, \quad \int_{0}^{T} \omega_{i}(T, \tau) d \tau=1
$$

Then the trajectory of process (1.1) may be brought to the terminal set M at time T. The proof is analogous to that of Theorem 1.

6. SPECIAL CASE

Let us consider the special case in which $\varphi_{i}\left(u_{i}, v\right)=u_{i}-v, U_{i}=\rho S, V=\sigma S, M_{i}=\varepsilon S, n_{i}=n$. Put $\xi_{i}\left(t, z_{i}, 0\right)=\pi \Phi_{i}(t) z_{i}$.
Condition 5. A number $p<+\infty: p=\min \left\{\tilde{p}>0: \xi_{i}\left(t+\tilde{p}, z_{i}\right)=\xi_{i}\left(t, z_{i}\right), \forall z_{i} \in R^{n}\right\}$ exists.

Condition 6.

$$
\begin{aligned}
& \operatorname{dom} W_{i}(t, \tau)=\bigcup_{k=0}^{\infty} \Delta(k, t) \quad t \geqslant 0, \tau \in[0, t] \\
& \Delta(k, t)= \begin{cases}{\left[t_{2 k}, t\right],} & t \in\left[t_{2 k}, t_{2 k+1}\right) \\
\left\{t_{2 k}, t_{2 k+1}\right), & t \geqslant t_{2 k+1} \\
\phi, & t<t_{2 k}\end{cases}
\end{aligned}
$$

Condition 7. $\theta \in[0, p]$ exists such that $0 \in \operatorname{int} \operatorname{co} \xi_{i}\left(\theta, z_{i}\right)$.
Using analogues of formulae (5.2)-(5.4), we define sets

$$
\Delta_{-}(k, t), \quad \Delta_{+}(k, t), \quad \Delta_{0}(k, t)
$$

Let us write $e_{i}\left(t, z_{i}\right)=\left(-\xi_{i}\left(t, z_{i}\right)\right)\left(\| \xi_{i}\left(t, z_{i} \|\right)^{-1}\right.$, provided that $\xi_{i}\left(t, z_{i}\right) \neq 0$

$$
\eta_{2 k+1}(t)=\int_{\Delta_{-}\left(k_{1} t\right)}\{\sigma(t-\tau)-\rho(t-\tau)-\omega(t, \tau)\} d \tau, \quad k=k(t), \ldots, 0
$$

Set $Q_{2 k+1}(t)=\tilde{\eta}_{2 k+1}(t) S$. For $\eta_{2 k+1} \in Q_{2 k+1}(t)$, define functions

$$
\beta_{2 k+1}^{i}\left(\eta_{2 k+1}\right)=\left(\tilde{\eta}_{2 k+1}(t)-\left\|\eta_{2 k+1}\right\|\right)\left(\left\|\xi_{i}\left(t, z_{i}\right)\right\|\right)^{-1}
$$

Provided that $\left(\eta_{2 k+1}, e_{i}\left(t, z_{i}\right)\right) \leqslant 0$, we have

$$
\begin{aligned}
& \beta_{2 k+1}^{i}\left(\eta_{2 k+1}\right)=\left(\left(\eta_{2 k+1}, e_{i}\left(t, z_{i}\right)\right)+\tilde{\eta}_{2 k+1}(t)-\| \eta_{2 k+1}-e_{i}\left(t, z_{i}\right) \times\right. \\
& \left.\times\left(\eta_{2 k+1}, e_{i}\left(t, z_{i}\right)\right) \|\right)\left(\left\|\xi_{i}\left(t, z_{i}\right)\right\|\right)^{-1}, \quad \text { if } \quad\left(\eta_{2 k+1}, e_{i}\left(t, z_{i}\right)\right)>0 \\
& \beta_{2 k+1}\left(\eta_{2 k+1}\right)=\sum_{i=1}^{v} \alpha_{i} \beta_{2 k+1}^{i}\left(\eta_{2 k+1}\right)
\end{aligned}
$$

We form a multi-valued map

$$
\Theta(z)=\left\{\theta: 0 \in \operatorname{int} \operatorname{co} \xi_{i}\left(\theta, z_{i}\right)\right\}
$$

By condition $\Theta(z) \neq \varnothing$. By condition 5 , if $\theta_{1} \in \Theta(z)$, then for all $k=0,1$, . . , we have $\left\{\theta_{1}+k p\right\} \in \Theta(z)$.

Define resolvent functions by

$$
\begin{aligned}
& \mu_{i}\left(t, \tau, z_{i}, v\right)= \begin{cases}\sup \left[\mu_{i} \geqslant 0:-\mu_{i} \xi_{i}\left(t, z_{i}\right) \in W_{i}(t, \tau, v)\right], \quad \text { if } \quad \tau \in \tilde{\Delta}_{+}(t) \\
0, & \text { if } \quad \tau \in[0, t] \backslash \tilde{\Delta}_{+}(t)\end{cases} \\
& \mu(t, \tau, v, \alpha)=\sum_{i=1}^{v} \alpha_{i} \mu_{i}\left(t, \tau, z_{i}, v\right)
\end{aligned}
$$

For $t \in \Theta(z)$, we write

$$
\lambda(t, z)=1-\inf _{v(\cdot) \in \Omega V} \min _{\substack{\eta_{2 k+1} \in Q_{2 k+1} \\ k=k(t), \ldots, 0}} \max _{(t) \alpha \in \mathrm{U}}\left\{\int_{0}^{1} \mu(t, \tau, z, v(\tau), \alpha) d \tau+\sum_{k=0}^{p} \beta_{2 k+1}\left(\eta_{2 k+1}\right)\right\}
$$

Finally, define a time $T_{\text {d() }}^{*}(z)=\min \{t \geqslant 0 ; t \in \Theta(z): \lambda(t, z) \leqslant 0\}$.
Theorem 3. Suppose that the conflict-controlled process (1.1) is in state z^{0} and

1. conditions 5 and 7 are satisfied,
2. a non-negative Borel function $\omega(t, \tau), t \geqslant \tau \geqslant 0$, exists such that conditions 6 and 4 are satisfied.

Then the trajectory of the process may be brought to the terminal set M at a time $T=T_{m(f)}^{*}(z)$ such that

$$
\int_{0}^{T} \omega(T, \tau) d \tau=1, \quad T<+\infty
$$

The proof relies on that of Theorem 1.

7. MODEL EXAMPLE

Consider the conflict-controlled process

$$
\begin{align*}
& \ddot{x}_{i}+4 b^{2} x_{i}=u_{i}, \quad x_{i}, y \in R^{n}, \quad\left\|u_{i}\right\| \leqslant 2 \sigma, \quad\|v\| \leqslant \sigma \\
& \ddot{y}+b^{2} y=v \tag{7.1}
\end{align*}
$$

Changing variables in this second-order system by $z_{1}^{i}=y-x_{i}, z_{2}^{i}=x_{i}, z_{4}^{i}=y$, we obtain a system of type (1.1) with

$$
z_{i} \in R^{4 n}, \quad z_{i}=\left(z_{1}^{i}, z_{2}^{i}, z_{3}^{i}, z_{4}^{i}\right), \quad \pi_{i}\left(z_{1}^{i}, z_{2}^{i}, z_{3}^{i}, z_{4}^{i}\right)=z_{1}^{i}
$$

After some calculations, we get

$$
\begin{aligned}
& W(t, \tau, v)=b^{-1} \sigma|\sin 2 b(t-\tau)| S-b^{-1} v|\sin b(t-\tau)|+\varepsilon \omega(t, \tau) S, v \in \sigma S \\
& W(t, \tau)=\left\{b^{-1} \sigma(|\sin 2 b(t-\tau)|-|\sin b(t-\tau)|)+\varepsilon \omega(t, \tau) \mid S\right. \\
& \xi_{i}\left(t, z_{i}, 0\right)=z_{1}^{i} \cos 2 b t-z_{2}^{i}(2 b)^{-1} \sin 2 b t+z_{3}^{i}(\cos 2 b t-\cos b t)+z_{4}^{i}(b)^{-1} \sin b t
\end{aligned}
$$

As the map $Q(t, \tau)$ we take

$$
Q(t, \tau)=b^{-1} \sigma(|\sin b(t-\tau)|-|\sin 2 b(t-\tau)|-\varepsilon \omega(t, \tau)\} S
$$

Condition 2 will hold with $Q(r, \tau)$ if

$$
\begin{equation*}
\int_{0}^{1}\left(b^{-1} \sigma(|\sin 2 b(t-\tau)|-|\sin b(t-\tau)|)+\varepsilon \omega(t, \tau) \mid \mathrm{d} \tau \geqslant 0 \text { for all } t \geqslant 0\right. \tag{7.2}
\end{equation*}
$$

This inequality and the definition (5.1) imply certain restrictions on ε, depending on the time t. There are three possible cases

1. $t \geqslant 2 \pi(3 b)^{-1} ; \varepsilon \geqslant \sigma\left(4 b^{2}\right)^{-1}$

$$
\omega(t, \tau)=\left\{\begin{array}{l}
0, \quad \tau \in\left[0, t-2 \pi(3 b)^{-1}\right] \cup\left(t-\pi(2 b)^{-1}, t\right] \\
4 b| | \sin b(t-\tau)|-|\sin 2 b(t-\tau)|\}, \quad \tau \in\left[t-2 \pi(3 b)^{-1}, t-\pi(2 b)^{-1}\right]
\end{array}\right.
$$

2. $t \in\left(\pi(2 b)^{-1}, 2 \pi(3 b)^{-1}\right) ; \varepsilon \geqslant(b)^{-2} \sigma\left(-\cos b t-\cos ^{2} b t\right)$

$$
\omega(t, \tau)=\left\{\begin{array}{l}
0, \quad \tau \in\left(t-\pi(2 b)^{-1}, t\right] \\
b(|\sin b(t-\tau)|-|\sin 2 b(t-\tau)|)-\left(-\cos b t-\cos ^{2} b t\right)^{-1}, \quad \tau \in\left[0, t-\pi(2 b)^{-1}\right]
\end{array}\right.
$$

3. $t \in\left(0, \pi(2 b)^{-1}\right) ; \varepsilon \geqslant 0 ; \infty(t, \tau)=(t)^{-1}$.

Theorem 3 implies that the time required to bring a trajectory of the process (1.1) to the terminal set, that is, $T=T_{o(\cdot)}(z)$, is finite, provided condition 7 holds for the initial states of the process and the parameters T and ε satisfy the above constraints.

REFERENCES

1. PONTRYAGIN L. S., Selected Papers, Vol. 2. Nauka, Moscow, 1988.
2. CHERNOUSKO F. L., AKULENKO L. D. and SOKOLOV B. N., Control of Oscillations. Nauka, Moscow, 1980.
3. CHIKRII A. A., Differential games with several pursuers. Banach Center Publ. Math. Control Theory 14P, 81-107, 1985.
4. CHIKRII A. A., Group pursuit with constraints on the evader's coordinates. Prikl. Mat. Mekh. 46, 6, 906-913, 1982.
5. CHIKRII A. A., PITTSYK M. V. and SHISHKINA N. B., L. S. Pontryagin's first direct method and some effective methods of pursuit. Kibernetika 5, 75-81, 1986.
6. MEZENTSEV A. V., On a certain class of differential games. Izv. Akad. Nauk SSSR, Tekhn. Kibern. 6, 3-7, 1971.
7. KRASOVSKII N. N. and SUBBOTIN A. I., Positional Differential Games. Nauka, Moscow, 1974.
8. PROKOPOVICH P. V. and CHIKRII A. A., Quasi-linear conflict-controlled processes with non-fixed time. Prikl. Mat. Mekh. 55, 1,63-71, 1991.
9. KURATOWSKI K., Topology. PWN, Warsaw, 1966.
10. AUBIN J.-P. and EKELAND I., Applied Nonlinear Analysis. John Wiley, New York, 1984.
11. IOFFE A. L. and TIKHOMIROV V. M., Theory of Extremum Problems. Nauka, Moscow, 1974.
12. WARGA J., Optimal Control of Differential and Functional Equations. Academic Press. New York, 1972.
13. CHIKRII A. A. and PILIPENKO Yu. V., Conflict-controlled processes with a periodic Pontryagin condition. Avtomatika 4, 67-77, 1991.
