OSCILLATORY CONFLICT-CONTROL PROCESSES[†]

YU. B. PILIPENKO and A. A. CHIKRII

Kiev

(Received 24 April 1992)

Some quasi-linear dynamical processes functioning under conditions of conflict [1, 3-8] are considered, on the assumption that Pontryagin's condition [1] holds only in certain intervals of the real half-line (this may occur, in particular, when a homogeneous system is performing periodic oscillations [2]). The method of resolvent functions [3, 4] is used to establish sufficient conditions for the group pursuit problem [3, 4] to be solvable. A typical special case is examined and the group pursuit problem is solved for a second-order system [6]. The results have a bearing on the research reported in [3-5].

1. STATEMENT OF THE PROBLEM

SUPPOSE the state of a process $z = (z_1, \ldots, z_n)$, $z_i \in \mathbb{R}^{n_i}$, in the space \mathbb{R}^n is described by the differential equations

$$\dot{z}_i = A_i z_i + \varphi_i(u_i, \upsilon), \quad u_i \in U_i, \quad \upsilon \in V$$
(1.1)

where A_i are square matrices of order n_i , $\varphi_i(u_i, \upsilon)$ are jointly continuous vector-valued functions, and U_i and V are non-empty compact sets $(i = 1, 2, ..., \upsilon$ throughout, unless stated otherwise).

The terminal set M is the union of sets M_1^*, \ldots, M_v^* , each of which can be expressed as $M_i^* = M_i^0 + M_i$, where M_i^0 are linear subspaces of R^{n_i} , and M_i are convex closed sets in the L_i -orthogonal complements of M_i^0 in R^{n_i} .

A trajectory of the conflict-controlled process (1.1) in state $z^0 = (z_1^0, \ldots, z_v^0)$ may be brought to the terminal set M at an instant of time $T(z^0)$ if measurable functions $u_i(t) = u_i(z_i^0, v_i(\cdot))$ exist, where $v_i(\cdot) = \{v(s) : s \in [0, t)\}, t \in [0, T(z^0)]$, with values in U_i , such that for at least one $i : z_i(T(z^0)) \in M_i^*$ and any measurable function $v(t), t \in [0, T(z^0)]$, it is true that $v(t) \in V$.

Our goal is to establish sufficient conditions, in terms of the parameters of process (1.1), to guarantee that the problem of bringing a trajectory to the terminal set in finite time is solvable.

2. AUXILIARY RESULTS

The proofs of the following results, which we shall need later, may be found in [8-12].

Let $K(\mathbb{R}^n)$ be the space of all non-empty compact sets in \mathbb{R}^n . We will define a Hausdorff metric in this space [9].

If X, $Y \subset K(\mathbb{R}^n)$ and S is the unit sphere about zero in \mathbb{R}^n , then dist $(X, Y) = \min\{\lambda \ge 0: X \subset Y + \lambda S, Y \subset X + \lambda S\}$.

†Prikl. Mat. Mekh. Vol. 57, No. 3, pp. 3-14, 1993.

A multiple-valued map A(x), $A: X \to K(\mathbb{R}^n)$, $X \subset \text{dom} A = \{x, A(x) \neq 0\}$ is upper semicontinuous at a point $x_0 \in X$, if, for every $\varepsilon > 0$, there exists $\delta > 0$ such that if $||x - x_0|| \le \delta$, then $A(x) \subset A(x_0) + \varepsilon S$. If a map A(x) is upper semi-continuous at each point of a set X, it is said to be upper semi-continuous on X. Given a set X, $X \subset K(\mathbb{R}^n)$, we define the cone $\operatorname{con} X = \{z: z = \lambda x, x \in X, \lambda > 0\}$, and let $\overline{\operatorname{con}} X$ denote the closure of $\operatorname{con} X$.

Lemma 1 [8]. Let X, Y, $M \subset K(\mathbb{R}^n)$; assume that A(x, y), $A: X * Y \to K(\mathbb{R}^n)$, is an upper semi-continuous (multiple-valued) map and f(x), $f: X \to \mathbb{R}^n$, a continuous function such that $f(x) \cap M = \emptyset$ for any $x \in X$, $y \in Y$. Then the function $\alpha(x, y)$, $\alpha: X * Y \to \mathbb{R}^1$, defined by $\alpha(x, y) = \max\{\alpha \ge 0: \alpha(M - f(x)) \cap A(x, y) \ne 0\}$ is upper semi-continuous.

Lemma 2 [10]. Let $X \subset K(\mathbb{R}^n)$; assume that T(x), $T: X \to K(\mathbb{R}^n)$, $A(x) A: X \to K(\mathbb{R}^n)$ are upper semi-continuous (multiple-valued) maps and f(x, y), $x \in X$, $y \in A(x)$, $f(x, y) \in \mathbb{R}^n$ is a continuous function. Then the multiple-valued map $C(x) = \{y \in A(x): f(x, y) \in T(x)\}$ is upper semi-continuous.

We shall say that a multiple-valued map A(x), $A: X \to K(\mathbb{R}^n)$, is Lebesgue (Borel) measurable if X is a Lebesgue- (Borel-)measurable set and, for any $Y \subset K(\mathbb{R}^n)$, the set $\{x \in X : A(x) \subset Y\}$ is Lebesgue (Borel) measurable. To simplify the terminology, we shall call Lebesgue-measurable maps simply measurable, and refer to Borel-measurable maps as Borel maps.

Lemma 3 [11]. Let $X \subset K(\mathbb{R}^n)$; assume that T(x), $T: X \to K(\mathbb{R}^n)$, A(x), $A: X \to K(\mathbb{R}^n)$, are measurable (Borel) multiple-valued maps and that the function f(x, y), $x \in X$, $y \in A(x)$, $f(x, y) \in \mathbb{R}^n$, is measurable (Borel) as a function of x and continuous as a function of y. Then the multiple-valued map $C(x) = \{y \in A(x) : f(x, y) \in T(x)\}$ is measurable (Borel).

Let $X \subset K(\mathbb{R}^n)$; let X_1 be the set of vectors $x \in X$ whose least component is their first one, X_2 the set of $x \in X_1$ whose least component is the second one, and so on, up to X_n . The set X_n clearly consists of a single point x^* . Then x^* is called the lexicographic minimum of X; let $x^* = \operatorname{lexmin} X$.

A selector of a multiple-valued map A(x), $A: X \to K(\mathbb{R}^n)$, is a single-valued function a(x) such that $a(x) \in A(x)$ for all $x \in X$.

Lemma 4 [12]. Let $X \subset K(\mathbb{R}^n)$, and let A(x), $A: X \to K(\mathbb{R}^n)$ be a measurable (Borel) map. Then the selector $a(x) = \operatorname{lexmin} A(x)$, $x \in X$ is measurable (Borel).

Lemma 5 [9]. Let X, Y, $Z \subset K(\mathbb{R}^n)$; let $\varphi(y)$, $\varphi: Y \to Z$ be a Borel function and y(x), $y: X \to Y$, a measurable function. Then the function $\psi(t) = \varphi(y(x))$, $\psi: X \to Z$ is measurable.

3. SCHEME OF THE METHOD

Let π_i denote the orthogonal projection operator from R^* on to the subspace L_i . Using the functions $W_i(t, u_i, v) = \pi_i \Phi_i(t) \varphi_i(u_i, v), t \ge 0, u_i \in U_i, v \in V$ (where $\Phi_i(t) = \exp(tA_i)$), we define multiple-valued maps

$$W_i(t,\upsilon) = \bigcup_{u_i \in U_i} W_i(t,u_i,\upsilon), \quad W_i(t) = \bigcap_{v \in V} W_i(t,\upsilon)$$

Pontryagin's condition means that $W_i(t) \neq 0$ for all $t \ge 0$. We shall adopt certain rather weaker assumptions [13].

Condition 1.

dom $W_i(t) = \left\{ \bigcup_{k=0}^{\infty} [t_{2k}^i, t_{2k+1}^i] \right\}, \quad t_0^i = 0, t_j^i < t_{j+1}^i$

for all $j = 0, 1, 2, \ldots$

Put

$$\Delta^{i}_{+} = \bigcup_{k=0}^{\infty} [t^{i}_{2k}, t^{i}_{2k+1}], \quad \Delta^{i}_{-} = \bigcup_{k=0}^{\infty} (t^{i}_{2k+1}, t^{i}_{2k+2})$$

Condition 2. Borel multiple-valued maps $Q_i(t), Q_i : \Delta_{-}^i \to K(L_i)$ exist, such that 1. we have

$$\bigcap_{v \in V} \{ W_i(t, v) + Q_i(t) \} \neq \emptyset$$

for all $t \in \Delta^i_{-}$ and 2. we have

$$\int_{t_{2k+1}}^{t_{2k+2}} Q_i(\tau) d\tau \subset \int_{t_{2k}}^{t_{2k+1}} W_i(\tau) d\tau$$

for all $k = 0, 1, 2, \ldots$ Define times

$$\tilde{\iota}_{2k+1}^{i} = \max\left[\iota \leq \iota_{2k+1}^{i}: \int_{\iota_{2k+1}^{i}}^{\iota_{2k+2}^{i}} Q_{i}(\tau) d\tau \subset \int_{\iota}^{\iota_{2k+1}^{i}} W_{i}(\tau) d\tau\right]$$
(3.1)

 $k = 0, 1, 2, \ldots$

Fix $t \in [0, +\infty)$. For every *i* there exists an integer $p_i \ge 0$ such that $t \in [t_{2p_i}^i, t_{2p_i+1}^i]$ or $t \in (t_{2p_i+1}^i, t_{2p_i+1}^i)$ $t_{2p_i+2}^i$). For *i* such that $t \in [t_{2p_i}^i, t_{2p_i+1}^i]$, we define sets $\Delta_{-}^i(t), \Delta_{0}^i(t), \tilde{\Delta}_{+}^i(t)$ by

$$\begin{split} \Delta_{-}^{i}(t) &= \bigcup_{k=0}^{p_{1}-1} \left(t - t_{2k+2}^{i}, t - t_{2k+1}^{i} \right); \quad \Delta_{0}^{i}(t) = \bigcup_{k=0}^{p_{1}-1} \left[t - t_{2k+1}^{i}, t - \tilde{t}_{2k+1}^{i} \right] \\ \tilde{\Delta}_{+}^{i}(t) &= \bigcup_{k=0}^{p_{1}-1} \left(t - \tilde{t}_{2k+1}^{i}, t - t_{2k}^{i} \right) \cup \left[0, t - t_{2p_{1}+1}^{i} \right] \end{split}$$

For *i* such that $t \in (t_{2p+1}^i, t_{2p+2}^i)$, we define sets $\Delta_0^i(t), \Delta_-^i(t), \tilde{\Delta}_+^i(t)$ by

$$\Delta_{-}^{i}(t) = \bigcup_{k=0}^{p_{i}-1} (t - t_{2k+2}^{i}, t - t_{2k+1}^{i}) \bigcup [0, t - t_{2p_{i}+1}^{i}]$$

$$\Delta_{0}^{i}(t) = \bigcup_{k=0}^{p_{i}} [t - t_{2k+1}^{i}, t - \tilde{t}_{2k+1}^{i}]; \quad \tilde{\Delta}_{+}^{i}(t) = \bigcup_{k=0}^{p_{i}-1} (t - \tilde{t}_{2k+1}^{i}, t - t_{2k}^{i})$$

For fixed t, t > 0, we let

$$\Gamma_{i}(t) = \begin{cases} \gamma_{i}(\cdot); & \gamma_{i}(t-\tau) \in W_{i}(t-\tau), \tau \in \tilde{\Delta}_{+}^{i}(t) \\ & \gamma_{i}(t-\tau) = 0, \tau \in [0,t] \setminus \tilde{\Delta}_{+}^{i}(t) \end{cases}$$

denote the set of Borel selectors of the map $W(t-\tau)$, $t \ge \tau \ge 0$. Set $\gamma(\cdot) = \gamma_1(\cdot)$, ..., $\gamma_{\nu}(\cdot)$), $\Gamma(\cdot) = (\Gamma_1(\cdot), \ldots, \Gamma_{\nu}(\cdot)).$

Fixing some Borel selector $\gamma(\cdot) \in \Gamma(t)$, we put

$$\xi_i(t, z_i, \gamma_i(\cdot)) = \pi_i \Phi_i(t) z_i + \int_0^i \gamma_i(t - \tau) d\tau$$
(3.2)

We now define the resolvent functions

$$\begin{array}{l}
\mu_{i}(t,\tau,z_{i},\upsilon,\gamma_{i}(\cdot)) = \\
= \begin{cases} \sup[\mu \ge 0: W_{i}(t-\tau,\upsilon) - \gamma_{i}(t-\tau) \bigcap \mu(M_{i} - \xi_{i}(t,z_{i},\gamma_{i}(\cdot))) \neq \phi] \\ \tau \in \tilde{\Delta}_{+}^{i}(t) \\ 0,\tau \in [0,t] \setminus \tilde{\Delta}_{+}^{i}(t) \end{cases}$$
(3.3)

Set

$$\mu(t,\tau,z,\upsilon,\gamma(\cdot),\alpha) = \sum_{i=1}^{\nu} \alpha_i \mu_i(t,\tau,z_i,\upsilon,\gamma_i(\cdot))$$
$$\alpha \in U = \left\{ \alpha: \alpha = (\alpha_1,...,\alpha_{\nu}), \alpha_i \ge 0, \sum_{i=1}^{\nu} \alpha_i = 1 \right\}$$

and define a time

$$T(z,\gamma(\cdot)) = \min\left\{t \ge 0: 1 - \inf_{\upsilon(\cdot)\in\Omega_V} \max_{\alpha\in U} \int_0^t \mu(t,\tau,z,\upsilon(\tau),\gamma(\cdot),\alpha)d\tau \le 0\right\}$$
(3.4)

 $\Omega_{v} = \{v(\cdot): v(\tau) \in V, \tau \ge 0, v(\tau) \text{ is a measurable function}\}.$

If $\xi_i(t, z_i, \gamma_i(\cdot)) \notin M_i$, the resolvent function $\mu(t, \tau, z, \upsilon, \gamma(\cdot), \alpha)$ is finite for any values of the arguments, and by Lemma 1 it is Borel with respect to υ, τ, t . Consequently, $\mu(t, \tau, z, \upsilon, \gamma(\cdot), \alpha)$ is an integrable function in any finite interval.

If an *i* exists such that at time t^* we have $\xi_i(t^*, z_i, \gamma_i(\cdot)) \in M_i$ and $\alpha_i \neq 0$, then $\mu(t^*, \tau, z, \upsilon, \gamma(\cdot), \alpha) = +\infty$ for any τ, υ . Using the fact that the integral of a function that equals $+\infty$ in a finite interval is also equal to $+\infty$, we deduce that inequality (3.4) is automatically true, so that $t^* = T(z, \gamma(\cdot))$.

4. MAIN THEOREM

Theorem 1. Suppose that the conflict-controlled process (1.1) is in its initial state z^0 and that conditions 1 and 2 are satisfied; suppose, moreover, that Borel selectors $\gamma_i^0(t-\tau)$, $\gamma_i^0(t-\tau) \in \Gamma_i(t)$, $t \ge \tau \ge 0$ exist, such that $T(z^0, \gamma^0(\cdot)) < +\infty$. Then the trajectory of the process may be brought to the terminal set M at time $T(z^0, \gamma^0(\cdot))$.

Proof. Put $T(z^0, \gamma^0(\cdot)) = T$. Let $v(\tau) \in \Omega_V$.

Let us assume that $\xi_i(T, z_i^0, \gamma_i^0(\cdot)) \notin M_i$ for all i = 1, 2, ..., v. Define the test function as follows:

$$\sigma(T,t,z^0,\upsilon(\cdot),\gamma^0(\cdot)) = 1 - \max_{\alpha \in U} \int_0^t \mu(T,\tau,z^0,\upsilon(\tau),\gamma^0(\cdot)) d\tau$$

Since $\sigma(T, 0, z^0, \upsilon(\cdot), \gamma^0(\cdot)) = 1$ and $\sigma(T, t, z^0, \upsilon(\cdot), \gamma^0(\cdot))$ is a continuous decreasing function of t, it follows from (3.4) that a time $t_*: 0 < t_* \leq T$ exists such that $\sigma(T, t_*, z^0, \upsilon(\cdot), \gamma^0(\cdot)) = 0$. We choose controls $u_i(\tau), u_i(\tau) \in U_i$ for $\tau \in [0, t_*]$ as follows.

1. Let $\tau \in \tilde{\Delta}^{i}_{+}(T) \cap [0, t_{*}]$.

Consider the multiple-valued map defined by

$$U_i^1(\tau, \upsilon) = \{u_i \in U_i : W_i(T - \tau, u_i, \upsilon) - -\gamma_i^0(T - \tau) \in \mu_i(T, \tau, z_i^0, \upsilon, \gamma_i^0(\cdot))(M_i - \xi_i(T, z_i^0, \gamma_i^0(\cdot)))\}$$

Remembering our assumptions about the parameters of the process (1.1), we may conclude

that $W_i(T-\tau, u_i, v) - \gamma_i^0(T-\tau)$ is a Borel function of τ and a continuous function of u_i , and that the multiple-valued function

$$\mu_i(T,\tau,z_i^0,\upsilon(\tau),\gamma_i^0(\cdot))[M_i-\xi_i(T,z_i^0,\gamma_i^0(\cdot))]$$

is a Borel function of τ , υ , since by Lemma 1 $\mu_i(T, \tau, z_i^0, \upsilon, \gamma_i^0(\cdot))$ is an upper semi-continuous function of υ .

By Lemma 3, $U_1^i(\tau, v)$ is a Borel function of v, τ . Starting from the multiple-valued map $U_1^i(\tau, v)$ we consider the selector $u_1^i(\tau, v) = \operatorname{lexmin} U_1^i(\tau, v)$.

By Lemma 4, $u_1^i(\tau, \upsilon)$ is a Borel function of τ, υ .

We now define the control $u_1^i(\tau)$ for $\tau \in \tilde{\Delta}_+^i(T) \cap [0, t_*]$ to be $u_i(\tau) = u_1^i(\tau, \upsilon(\tau))$. Then, by Lemma 5, $u_i(\tau)$ is measurable.

2. Let $\tau \in \Delta'_{-}(T)$. We form the multiple-valued map

$$U_2^i(\tau,\upsilon) = \{u_i \in U_i : W_i(T-\tau,u_i,\upsilon) \in -Q_i(T-\tau)\}$$

By condition 2 and Lemmas 2 and 3, $U_2^i(\tau, v)$ is a non-empty Borel function of τ and an upper semi-continuous function of v.

Define $u_2^i(\tau, \upsilon) = \operatorname{lexmin} U_2^i(\tau, \upsilon)$ and define the control $u_i(\tau)$ for $\tau \in \Delta_-^i(T)$ to be $u_2^i(\tau, \upsilon(\tau))$. As in case 1, one shows that $u_i(\tau)$ is a measurable function of τ for $\tau \in \Delta_-^i(T)$. Put

$$\eta_{2k+1}^{i}(u_{i}(\cdot), v(\cdot)) = \int_{T-p_{k+2}}^{T-p_{k+1}} W_{i}(T-\tau, u_{i}(\tau) \cdot v(\tau)) d\tau, \quad k = p_{i}-1, \ldots, 0$$

For *i* such that $t \in (t_{2p+1}^i, t_{2p+2}^i)$, if $k = p_i$, we obtain

$$\eta_{2p_i+1}^i(u_i(\cdot), \ \upsilon(\cdot)) = \int_0^{T-t_{2p_i+1}^i} W_i(T \qquad u_i(\tau), \ \upsilon(\tau)) d\tau.$$

3. Let $\tau \in \Delta_0^i(T)$. Then $\tau \in [t - t_{2k+1}^i, t - \tilde{t}_{2k+2}^i]$, where $k = p_i - 1, \ldots, 0$ for *i* such that $T \in [t_{2p_i}^i, t_{2p_i+1}^i]$, and $k = p_i, \ldots, 0$ for *i* such that $T \in (t_{2p_i+1}^i, t_{2p_i+2}^i)$.

By the definition of $u_i(\tau)$, for $\tau \in \Delta_-^i(T)$

$$-\eta_{2k+1}^{i}(u_{i}(\cdot), v(\cdot)) \in \int_{T-t_{2k+2}^{i}}^{T-t_{2k+1}^{i}}Q_{i}(T-\tau)d\tau$$

$$-\eta_{2p_{i}+1}^{i}(u_{i}(\cdot), v(\cdot)) \in \int_{0}^{T-t_{2p+1}^{i}}Q_{i}(T-\tau)d\tau$$
(4.1)

It follows from (3.1) and (4.1) that

$$-\eta_{2k+1}^{i}(u_{i}(\cdot), v(\cdot)) \in \int_{T-t_{2k+1}}^{T-t_{2k+1}} W_{i}(T-\tau) d\tau$$

$$(4.2)$$

By (4.2), a Borel selector $h_{2k+1}^i(T-\tau)$ of the map $W_i(T-\tau)$, $\tau \in (T-t_{2k+1}^i, T-\tilde{t}_{2k+1}^i)$ exists, such that

$$\int_{T-t_{2k+1}}^{T-t_{2k+1}} h_{2k+1}(T-\tau) d\tau = -\eta_{2k+1}^{i}(u_{i}(\cdot), v(\cdot)).$$

For those *i* such that $T \in (t_{2p_i+1}^i, t_{2p_i+2}^i)$, we have $k = p_i, \ldots, 0$. For those *i* such that $T \in (t_{2p_i}^i, t_{2p_i+1}^i)$, we have $k = p_i - 1, \ldots, 0$. Define $h^i(T-\tau) = h_{2k+1}^i(T-\tau)$ for all k.

Thus, the function $h^i(T-\tau)$ has been defined for all $\tau \in \Delta_{-}^i(t)$. We now form the multiple-valued map

$$U_{3}^{i}(\tau, \upsilon) = \{u_{i} \in U_{i} : W_{i}(T - \tau, u_{i}, \upsilon) = h^{i}(T - \tau)\}$$

By Lemmas 2 and 3, $U_3^i(\tau, v)$ is a Borel function of τ and an upper semi-continuous function of v.

Put $u_3^i(\tau, \upsilon) = \operatorname{lexmin} U_3^i(\tau, \upsilon)$, and define the control $u_i(\tau)$ to be $u_3^i(\tau, \upsilon(\tau))$. By Lemmas 4 and 5, we see that $u_i(\tau)$ is a measurable function of τ for $\tau \in \Delta_0^i(T)$. 4. Let $\tau \in \tilde{\Delta}_+^i(T) \cap [t_*, T]$. We form a multiple-valued map

$$U_4^i(\tau,\upsilon) = \{u_i \in U_i : W_i(T-\tau,u_i,\upsilon) = \gamma_i^{\upsilon}(T-\tau)\}$$

Define $u_4^i(\tau, \upsilon) = \operatorname{lexmin} U_4^i(\tau, \upsilon)$, and define the control $u_i(\tau)$ to be $u_4^i(\tau, \upsilon(\tau))$. As in case 3, one shows that $u_i(\tau)$ is a measurable function in the interval $\tau \in \Delta_+^i(T) \cap [t_*, T]$. By Cauchy's formula

$$\pi_i z_i(T) = \pi_i \Phi_i(T) z_i^0 + \int_0^T W_i(T - \tau, u_i(\tau), \upsilon(\tau)) d\tau.$$
(4.3)

Taking the definition of the control $u_i(\tau)$ for $\tau \in \Delta_{-}^i(T)$ and $\tau \in \Delta_0^i(T)$ into account, we obtain

$$\int_{T-t_{2k+2}^{i}}^{T-t_{2k+1}^{i}} W_{i}(T-\tau, u_{i}(\tau), \upsilon(\tau)) d\tau + \int_{T-t_{2k+1}^{i}}^{T-t_{2k+1}^{i}} W_{i}(T-\tau, u_{i}(\tau), \upsilon(\tau)) d\tau = 0$$
(4.4)

for all $k = p_i - 1, ..., 0$.

For *i* such that $T \in (t_{2p_i+1}^i, t_{2p_i+2}^i)$ when $k = p_i$, we obtain

$$\int_{0}^{T-t_{2_{p+1}}^{i}} W_{i}(T-\tau, u_{i}(\tau), \upsilon(\tau)) d\tau + \int_{T-t_{2_{p+1}}^{i}}^{T-t_{2_{p+1}}^{i}} W_{i}(T-\tau, u_{i}(\tau), \upsilon(\tau)) d\tau = 0$$
(4.5)

By the method of resolvent functions [3], we see that for $\tau \in \tilde{\Delta}_{+}^{i}(T)$

$$W_{i}(T-\tau, u_{i}(\tau), \upsilon(\tau)) - \gamma_{i}^{0}(t-\tau) \in \mu_{i}(T, \tau, z_{i}^{0}, \upsilon(\tau), \gamma_{i}^{0}(\cdot))[M_{i} - \xi_{i}(T, z_{i}^{0}, \gamma_{i}^{0}(\cdot))]$$
(4.6)

Taking into account that the functions

$$W_i(T-\tau, u_i(\tau), \upsilon(\tau)), \quad \gamma_i^0(T-\tau), \quad \mu_i(T, \tau, z_i^0, \upsilon(\tau), \quad \gamma_i^0(\cdot))$$

are measurable with respect to τ , we deduce from (4.6) that

$$\int_{\tilde{A}_{*}(T)} W_{i}(T-\tau, u_{i}(\tau), \upsilon(\tau)) d\tau \in [M_{i}-\xi_{i}(T, z_{i}^{0}, \gamma_{i}^{0}(\cdot))] \int_{\tilde{A}_{*}(T)} \mu_{i}(T, \tau, z_{i}^{0}, \upsilon(\tau), \gamma_{i}^{0}(\cdot)) d\tau + \int_{\tilde{A}_{*}(T)} \gamma_{i}^{0}(T-\tau) d\tau$$

$$(4.7)$$

Noting that $\gamma_i^0(T-\tau) = 0$ and $\mu_i(T, \tau, z_i^0, \upsilon(\tau), \gamma_i^0(\cdot)) = 0$ for $\tau \in [0, T] \setminus \Delta_+^i(T)$, and using (4.4) and (4.5), we can write (4.7) in the form

Oscillatory conflict-control processes

$$\int_{0}^{T} W_{i}(T-\tau, u_{i}(\tau), \upsilon(\tau)) d\tau \in [M_{i}-\xi_{i}(T, z_{i}^{0}, \gamma_{i}^{0}(\cdot))] \int_{0}^{T} \mu_{i}(T, \tau, z_{i}^{0}, \upsilon(\tau), \gamma_{i}^{0}(\cdot)) d\tau + \int_{0}^{T} \gamma_{i}^{0}(T-\tau) d\tau$$

$$(4.8)$$

The test function $\sigma(T, T, z^0, \upsilon(\cdot), \gamma(\cdot))$ vanishes by the definition of the controls $u_i(\tau)$, i.e. an index i_0 exists such that

$$1 - \int_{0}^{T} \mu_{i_0}(T, \tau, z_{i_0}^0, \upsilon(\tau), \gamma_{i_0}^0(\cdot)) d\tau = 0.$$
(4.9)

It follows from (3.2), (4.3), (4.8) and (4.9) that

$$\pi_{i_0} z_{i_0}^0(T) \in M_{i_0}$$

Let us consider the case when $\xi_{i_0}(T, z_{i_0}^0, \gamma_{i_0}^0(\cdot)) \in M_{i_0}$ for some number i_0 . We then define the control $u_{i_0}(\tau)$, $u_{i_0}(\tau) \in U_i$, $\tau \in [0, T]$ as follows:

$$u_{i_0}(\tau) = \begin{cases} u_2^{i_0}(\tau, \upsilon(\tau)), & \tau \in \Delta_-^{i_0}(T) \\ u_3^{i_0}(\tau, \upsilon(\tau)), & \tau \in \Delta_0^{i_0}(T) \\ u_4^{i_0}(\tau, \upsilon(\tau)), & \tau \in \tilde{\Delta}_+^{i_0}(T) \end{cases}$$

It follows from (3.2) and (4.3) that in this case $\pi_{i_k} z_{i_k}^0(T) \in M_{i_k}$ also. This proves the theorem.

5. MODIFIED METHOD

We shall now examine another approach to the solution of our problem. We introduce multi-valued maps

$$W_{i}(t, \tau, \upsilon) = \pi_{i} \Phi_{i}(t-\tau) \varphi_{i}(U_{i}, \upsilon) - \omega_{i}(t, \tau) M_{i}$$

$$W_{i}(t, \tau) = \bigcap_{\upsilon \in V} W_{i}(t, \tau, \upsilon), \ \omega_{i}(t, \tau) \ge 0, \ \int_{0}^{t} \omega_{i}(t, \tau) d\tau = 1$$
(5.1)

Condition 3.

dom
$$Wi(t, \tau) = \bigcup_{k=0}^{\infty} \Delta^{i}(k, t), \text{ for all } t \ge 0, \tau \in [0, t]$$

$$\Delta^{i}(k, t) = \begin{cases} [t_{2k}^{i}, t], & t \in [t_{2k}^{i}, t_{2k+1}^{i}) \\ [t_{2k}, t_{2k+1}^{i}), & t \ge t_{2k+1}^{i} \\ \phi, & t < t_{2k}^{i} \end{cases}$$

Define sets $\Delta_{-}^{i}(k, t)$ and $\Delta_{+}^{i}(k, t)$ by the formulae

$$\Delta_{-}^{i}(k,t) = \begin{cases} (t - t_{2k+2}^{i}, t - t_{2k+1}^{i}), & t \ge t_{2k+2}^{i} \\ [0,t - t_{2k+1}^{i}), & t \in [t_{2k+1}^{i}, t_{2k+2}^{i}) \\ \phi, & t < t_{2k+1}^{i} \end{cases}$$
(5.2)

$$\Delta_{+}^{i}(k,t) = \begin{cases} [t - t_{2k+1}^{i}, t - t_{2k}^{i}], & t \ge t_{2k+1}^{i} \\ [0, t - t_{2k}^{i}], & t \in [t_{2k}^{i}, t_{2k+1}^{i}] \\ \phi, & t < t_{2k}^{i} \end{cases}$$
(5.3)

Put $k_i(t) = \max[k \ge 0: \Delta_-^i(k, t) \ne 0]$. Now set

$$\Delta_{-}^{i}(t) = \bigcup_{k=0}^{k_{i}(t)} \Delta_{-}^{i}(k,t); \quad \Delta_{+}^{i}(t) = \bigcup_{k=0}^{k_{i}(t)+1} \Delta_{+}^{i}(k,t)$$

Condition 4. Borel multi-valued maps $Q_i(t, \tau), Q_i : [0, +\infty] * \Delta_{-}(t) \to K(L_i)$ exist, such that

1.
$$\bigcap_{\nu \in V} \{W_i(t, \tau, \nu) + Q_i(t, \tau)\} \neq \emptyset, \text{ for all } \tau \in \Delta_-^i(t).$$

2.
$$\int_{\Delta_-^i(k, \tau)} Q_i(t, \tau) d\tau \subset \int_{\Delta_+^i(k, \tau)} W_i(t, \tau) d\tau, \text{ for all } k = 0, \ldots, k_i(t).$$

Define the times

$$\tilde{t}_{2k+1}^{i} = \max\left[\tilde{t} \leq t_{2k+1}^{i} : \int_{\Delta_{-}^{i}(k,t)} Q_{i}(t,\tau) d\tau \subset \int_{t-t_{2k+1}}^{t-\tilde{t}} W_{i}(t,\tau) d\tau\right]$$

Now set

$$\Delta_{0}^{i}(k,t) = \begin{cases} [t - t_{2k+1}^{i}, t - \tilde{t}_{2k+1}^{i}], t \ge t_{2k+1}^{i} & \Delta_{0}^{i}(t) = \bigcup_{k=0}^{k_{0}^{i}(t)} \Delta_{0}^{i}(k,t) \\ \phi, t < t_{2k+1}^{i} & \tilde{\Delta}_{+}^{i}(t) = \Delta_{+}^{i}(t) \setminus \Delta_{0}^{i}(t) \end{cases}$$
(5.4)

Put

$$\Gamma_i(t) = \begin{cases} \gamma_i(\cdot): & \gamma_i(t,\tau) \in W_i(t,\tau), \quad \tau \in \tilde{\Delta}^i_+(t), \\ \gamma_i(t,\tau) = 0, \quad \tau \in [0,t] \setminus \tilde{\Delta}^i_+(t), \end{cases} \text{ for Borel}$$

Set

$$\begin{aligned} \xi_i(t, z_i, \gamma_i(\cdot)) &= \pi_i \Phi_i(t) z_i + \int_0^t \gamma_i(t, \tau) d\tau \\ \mu_i(t, \tau, z_i, \upsilon, \gamma_i(\cdot)) &= \begin{cases} \sup[\mu \ge 0: -\mu \xi_i(t, z_i, \gamma_i(\cdot)) \in W_i(t, \tau, \upsilon) - \gamma_i(t, \tau)] \\ \tau \in \tilde{\Delta}^i_+(t) \\ 0, \tau \in [0, t] \setminus \tilde{\Delta}^i_+(t) \end{cases} \\ \mu(t, \tau, z, \upsilon, \gamma(\cdot), \alpha) &= \sum_{i=1}^{\nu} \alpha_i \mu_i(t, \tau, z_i, \upsilon, \gamma_i(\cdot)) \\ T_{\omega(\cdot)}(z, \gamma(\cdot)) &= \min \left\{ t \ge 0: 1 - \inf_{\upsilon(\cdot) \in \Omega_{\nu}} \max_{\alpha \in U} \int_0^t \mu(t, \tau, z, \upsilon(\tau), \gamma(\cdot), \alpha) d\tau \le 0 \right\} \end{aligned}$$

Theorem 2. Suppose that the conflict-controlled process (1.1) is in state z^0 and that nonnegative Borel functions $\omega_i(t, \tau), t \ge \tau \ge 0$, and Borel selectors $\gamma_i^0(t, \tau) \in \Gamma_i(t)$ exist such that

414

Oscillatory conflict-control processes

$$T = T_{\omega(\cdot)}(z^0, \gamma^0(\cdot)) < +\infty, \qquad \int_0^t \omega_i(T, \tau) d\tau = 1.$$

Ŧ

Then the trajectory of process (1.1) may be brought to the terminal set M at time T. The proof is analogous to that of Theorem 1.

6. SPECIAL CASE

Let us consider the special case in which $\varphi_i(u_i, \upsilon) = u_i - \upsilon$, $U_i = \rho S$, $V = \sigma S$, $M_i = \varepsilon S$, $n_i = n$. Put $\xi_i(t, z_i, 0) = \pi \Phi_i(t) z_i$.

Condition 5. A number $p < +\infty$: $p = \min\{\tilde{p} > 0: \xi_i(t + \tilde{p}, z_i) = \xi_i(t, z_i), \forall z_i \in \mathbb{R}^n\}$ exists. Condition 6.

$$\operatorname{dom} W_{i}(t,\tau) = \bigcup_{k=0}^{\infty} \Delta(k,t) \quad t \ge 0, \tau \in [0,t]$$
$$\Delta(k,t) = \begin{cases} [t_{2k},t], & t \in [t_{2k},t_{2k+1}) \\ [t_{2k},t_{2k+1}), & t \ge t_{2k+1} \\ \phi, & t < t_{2k} \end{cases}$$

Condition 7. $\theta \in [0, p]$ exists such that $0 \in \operatorname{int} \operatorname{co} \xi_i(\theta, z_i)$. Using analogues of formulae (5.2)-(5.4), we define sets

$$\Delta_{-}(k,t), \quad \Delta_{+}(k,t), \quad \Delta_{0}(k,t)$$

Let us write $e_i(t, z_i) = (-\xi_i(t, z_i))(||\xi_i(t, z_i||)^{-1})$, provided that $\xi_i(t, z_i) \neq 0$

$$\eta_{2k+1}(t) = \int_{\Delta_{-}(k,t)} \{\sigma(t-\tau) - \rho(t-\tau) - \omega(t,\tau)\} d\tau, \quad k = k(t), \ldots, 0.$$

Set $Q_{2k+1}(t) = \tilde{\eta}_{2k+1}(t)S$. For $\eta_{2k+1} \in Q_{2k+1}(t)$, define functions

$$\beta_{2k+1}^{\prime}(\eta_{2k+1}) = (\tilde{\eta}_{2k+1}(t) - ||\eta_{2k+1}||)(||\xi_i(t,z_i)||)^{-1}$$

Provided that $(\eta_{2k+1}, e_i(t, z_i)) \leq 0$, we have

$$\beta_{2k+1}^{i}(\eta_{2k+1}) = ((\eta_{2k+1}, e_{i}(t, z_{i})) + \tilde{\eta}_{2k+1}(t) - ||\eta_{2k+1} - e_{i}(t, z_{i}) \times (\eta_{2k+1}, e_{i}(t, z_{i}))||)(||\xi_{i}(t, z_{i})||)^{-1}, \quad \text{if} \quad (\eta_{2k+1}, e_{i}(t, z_{i})) > 0$$

$$\beta_{2k+1}(\eta_{2k+1}) = \sum_{i=1}^{\nu} \alpha_{i}\beta_{2k+1}^{i}(\eta_{2k+1})$$

We form a multi-valued map

$$\Theta(z) = \{\theta; \ 0 \in \operatorname{int} \operatorname{co} \xi_i(\theta, z_i)\}$$

By condition $\Theta(z) \neq \emptyset$. By condition 5, if $\theta_1 \in \Theta(z)$, then for all $k = 0, 1, \ldots$, we have $\{\theta_1 + kp\} \in \Theta(z)$.

Define resolvent functions by

$$\mu_i(t,\tau,z_i,\upsilon) = \begin{cases} \sup[\mu_i \ge 0; -\mu_i\xi_i(t,z_i) \in W_i(t,\tau,\upsilon)], & \text{if } \tau \in \tilde{\Delta}_+(t) \\ 0, & \text{if } \tau \in [0,t] \setminus \tilde{\Delta}_+(t) \end{cases}$$
$$\mu(t,\tau,\upsilon,\alpha) = \sum_{i=1}^{\nu} \alpha_i \mu_i(t,\tau,z_i,\upsilon)$$

For $t \in \Theta(z)$, we write

$$\lambda(t,z) = 1 - \inf_{\substack{\upsilon(\cdot) \in \Omega_V}} \min_{\substack{\eta_{2k+1} \in Q_{2k+1} \\ k=k(t),\dots,0}} \max_{\substack{(t) \alpha \in U}} \left\{ \int_0^t \mu(t,\tau,z,\upsilon(\tau),\alpha) \, d\tau + \sum_{k=0}^p \beta_{2k+1}(\eta_{2k+1}) \right\}$$

Finally, define a time $T^*_{\omega(\cdot)}(z) = \min\{t \ge 0; t \in \Theta(z) : \lambda(t, z) \le 0\}$.

Theorem 3. Suppose that the conflict-controlled process (1.1) is in state z^0 and 1, conditions 5 and 7 are satisfied,

2. a non-negative Borel function $\omega(t, \tau)$, $t \ge \tau \ge 0$, exists such that conditions 6 and 4 are satisfied.

Then the trajectory of the process may be brought to the terminal set M at a time $T = T_{\omega(\cdot)}^*(z)$ such that

$$\int_{0}^{T} \omega(T, \tau) d\tau = 1, \quad T < +\infty.$$

The proof relies on that of Theorem 1.

7. MODEL EXAMPLE

Consider the conflict-controlled process

$$\ddot{x}_i + 4b^2 x_i = u_i, \quad x_i, y \in \mathbb{R}^n, \quad ||u_i|| \le 2\sigma, \quad ||v|| \le \sigma$$

$$\ddot{y} + b^2 y = v$$
(7.1)

Changing variables in this second-order system by $z_1^i = y - x_i$, $z_2^i = x_i$, $z_4^i = y$, we obtain a system of type (1.1) with

$$z_i \in \mathbb{R}^{4n}, \quad z_i = (z_1^i, z_2^i, z_3^i, z_4^i), \quad \pi_i(z_1^i, z_2^i, z_3^i, z_4^i) = z_1^i$$

After some calculations, we get

$$W(t,\tau,\upsilon) = b^{-1}\sigma |\sin 2b(t-\tau)| S - b^{-1}\upsilon |\sin b(t-\tau)| + \varepsilon\omega(t,\tau)S, \upsilon \in \sigma S$$

$$W(t,\tau) = \{b^{-1}\sigma (|\sin 2b(t-\tau)| - |\sin b(t-\tau)|) + \varepsilon\omega(t,\tau)\}S$$

$$\xi_i(t,z_i,0) = z_1^i \cos 2bt - z_2^i (2b)^{-1} \sin 2bt + z_3^i (\cos 2bt - \cos bt) + z_4^i (b)^{-1} \sin bt$$

As the map $Q(t, \tau)$ we take

$$Q(t,\tau) = b^{-1}\sigma ||\sin b(t-\tau)| - |\sin 2b(t-\tau)| - \varepsilon \omega(t,\tau)|S$$

Condition 2 will hold with $Q(t, \tau)$ if

$$\int_{0}^{t} |b^{-1}\sigma(|\sin 2b(t-\tau)| - |\sin b(t-\tau)|) + \varepsilon\omega(t,\tau)) d\tau \ge 0 \quad \text{for all} \quad t \ge 0$$
(7.2)

This inequality and the definition (5.1) imply certain restrictions on ε , depending on the time t. There are three possible cases

1.
$$t \ge 2\pi (3b)^{-1}$$
; $\varepsilon \ge \sigma (4b^2)^{-1}$

$$\omega(t,\tau) = \begin{cases} 0, \quad \tau \in [0,t-2\pi (3b)^{-1}] \cup (t-\pi (2b)^{-1},t] \\ 4b\{|\sin b(t-\tau)| - |\sin 2b(t-\tau)|\}, \quad \tau \in [t-2\pi (3b)^{-1},t-\pi (2b)^{-1}] \end{cases}$$

2. $t \in (\pi(2b)^{-1}, 2\pi(3b)^{-1}); \epsilon \ge (b)^{-2}\sigma(-\cos bt - \cos^2 bt)$

$$\omega(t,\tau) = \begin{cases} 0, \quad \tau \in (t-\pi(2b)^{-1},t] \\ b(|\sin b(t-\tau)| - |\sin 2b(t-\tau)|) - (-\cos bt - \cos^2 bt)^{-1}, \quad \tau \in [0,t-\pi(2b)^{-1}] \end{cases}$$

3. $t \in (0, \pi(2b)^{-1}); \epsilon \ge 0; \omega(t, \tau) = (t)^{-1}$.

Theorem 3 implies that the time required to bring a trajectory of the process (1.1) to the terminal set, that is, $T = T_{o(\cdot)}(z)$, is finite, provided condition 7 holds for the initial states of the process and the parameters T and ε satisfy the above constraints.

REFERENCES

- 1. PONTRYAGIN L. S., Selected Papers, Vol. 2. Nauka, Moscow, 1988.
- 2. CHERNOUS'KO F. L., AKULENKO L. D. and SOKOLOV B. N., Control of Oscillations. Nauka, Moscow, 1980.
- 3. CHIKRII A. A., Differential games with several pursuers. Banach Center Publ. Math. Control Theory 14P, 81-107, 1985.
- 4. CHIKRII A. A., Group pursuit with constraints on the evader's coordinates. Prikl. Mat. Mekh. 46, 6, 906-913, 1982.
- CHIKRII A. A., PITTSYK M. V. and SHISHKINA N. B., L. S. Pontryagin's first direct method and some effective methods of pursuit. *Kibernetika* 5, 75-81, 1986.
- 6. MEZENTSEV A. V., On a certain class of differential games. Izv. Akad. Nauk SSSR, Tekhn. Kibern. 6, 3-7, 1971.
- 7. KRASOVSKII N. N. and SUBBOTIN A. I., Positional Differential Games. Nauka, Moscow, 1974.
- PROKOPOVICH P. V. and CHIKRII A. A., Quasi-linear conflict-controlled processes with non-fixed time. Prikl. Mat. Mekh. 55, 1, 63-71, 1991.
- 9. KURATOWSKI K., Topology. PWN, Warsaw, 1966.
- 10. AUBIN J.-P. and EKELAND I., Applied Nonlinear Analysis. John Wiley, New York, 1984.
- 11. IOFFE A. L. and TIKHOMIROV V. M., Theory of Extremum Problems. Nauka, Moscow, 1974.
- 12. WARGA J., Optimal Control of Differential and Functional Equations. Academic Press. New York, 1972.
- 13. CHIKRII A. A. and PILIPENKO Yu. V., Conflict-controlled processes with a periodic Pontryagin condition. Avtomatika 4, 67-77, 1991.

Translated by D.L.